복소해석학 중간고사

2004. 10.20 , 앞 장의 문제만 제출할 것. 150 점 만점

1 (20) Let U be the open unit disk $|z|<1$. For $a \in U$ consider the function $\phi(z)=\frac{z-a}{1-\bar{a} z}$.
a) Show that ϕ maps U into U and ∂U into ∂U.
b) Show that $\phi: U \rightarrow U$ is one-to-one and onto.

2 (10) Show that any linear (linear fractional) transformation which transforms the real axis into itself can be written with real coefficients.

3 Evaluate the integrals:
(10) a) $\int_{C} \frac{2 z^{2}+5}{\left(z^{2}+1\right)^{2}} d z$, where C is the circle $|z+i|=1$.
(10) b) $\int_{|z|=1} \frac{\sin z}{z^{3}} d z$.
(10) c) $\int_{\gamma}\left(2 \bar{z}+\frac{z^{2}+z+1}{z-3}\right) d z$, where γ is the circle of radius 1 centered at $1+i$.
(20) d) $\int_{0}^{\infty} \frac{x \sin x}{x^{2}+1} d x$.

4 (10) Let U be the open unit disk and $f \in H(\bar{U})$. Suppose that $f(z)>0$ for all z with $|z|=1$. Prove that f is constant on \bar{U}.

5 (15) If $P(z)$ is a polynomial and if f is holomorphic on all of \mathbb{C}, and if there exists a real constant C such that $|f(z)| \leq C|P(z)|$ for every $z \in \mathbb{C}$, then $f=c P$ for some $c \in \mathbb{C}$. Is there an analogous statement with P replaced by an arbitrary holomorphic function on all of \mathbb{C} ?

6 (25) Let $u(r, \theta)=\log r$ defined on $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$.
a) Show that u is harmonic on \mathbb{C}^{*}.
b) Find $* d u$.
c) Find the period(s) of $* d u$, that is, find $\int_{\gamma} * d u$ for each closed curve γ of the homology basis of \mathbb{C}^{*}.
d) Find a conjugate harmonic function that is defined locally.
e) Does there exist a harmonic conjugate that is globally defined? Explain why or why not.

7 (10) Let f be a meromorphic function on a simply connected open set $\Omega \subset \mathbb{C}$. Prove that f has a primitive that is meromorphic on Ω if and only if at each pole of f the residue of f is zero. (참고 primitive $=$ 원시함수)

8 (10) Prove that for each non-empty open subset $\Omega \subset \mathbb{C}$, and for all points $a, b \in \mathbb{C} \backslash \Omega$ in the same connected component of $\mathbb{C} \backslash \Omega$, there exists a complex square root of $(z-a)(z-b)$, in other words, a function $f \in H(\Omega)$ such that $[f(z)]^{2}=(z-a)(z-b)$ for every $z \in \Omega$.

9 Evaluate
a) $\sin i$
b) i^{i}.

10 State and prove Morera's theorem.

11 Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

12 (10) Let U be the unit disk $|z|<1$. Suppose that $f \in H(\bar{U})$ and that $|f(z)|<1$ for z with $|z|=1$. Show that f has a fixed point in U, that is, there is a point $z \in U$ such that $f(z)=z$. How many fixed points are there in U ?

13 Suppose that $f \in H(\bar{U})$ and that f has no zero on $|z|=1$. If $\phi \in H(\bar{U})$ what is the value of the integral?

$$
\frac{1}{2 \pi i} \int_{|z|=1} \frac{f^{\prime}(z) \phi(z)}{f(z)} d z
$$

$14 f \in H(\bar{U})$ and f is bounded. Then $\forall \zeta \in U$

$$
f(\zeta)=\frac{1}{\pi} \iint_{U} \frac{f(\zeta)}{(1-\bar{z} \zeta)^{2}} d x d y
$$

